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BCR-ABL1–positive acute leukemia can be classified into three disease categories:
B-lymphoblastic leukemia (B-ALL), acute myeloid leukemia (AML), and mixed-
phenotype acute leukemia (MPAL). We conducted an integrative analysis of RNA
sequencing (RNA-seq) data obtained from 12 BCR-ABL1–positive B-ALL, AML, and
MPAL samples to evaluate its diagnostic utility. RNA-seq facilitated the identification of all
p190 BCR-ABL1 with accurate splicing sites and a new gene fusion involving MAP2K2.
Most of the clinically significant mutations were also identified including single-nucleotide
variations, insertions, and deletions. In addition, RNA-seq yielded differential gene
expression profile according to the disease category. Therefore, we selected 368
genes differentially expressed between AML and B-ALL and developed two differential
diagnosis models based on the gene expression data using 1) scoring algorithm and 2)
machine learning. Both models showed an excellent diagnostic accuracy not only for our
12 BCR-ABL1–positive cases but also for 427 public gene expression datasets from
acute leukemias regardless of specific genetic aberration. This is the first trial to develop
models of differential diagnosis using RNA-seq, especially to evaluate the potential role of
machine learning in identifying the disease category of acute leukemia. The integrative
analysis of gene expression data by RNA-seq facilitates the accurate differential diagnosis
of acute leukemia with successful detection of significant gene fusion and/or mutations,
which warrants further investigation.

Keywords: BCR-ABL1, mixed-phenotype acute leukemia, RNA sequencing, gene fusion, mutation, expression,
machine learning, acute leukemia
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INTRODUCTION

Next-generation sequencing (NGS) has been continuously
expanded for use in clinical laboratories. It is now commonly
used to detect gene mutations in DNA samples and identify
recurrent fusions of RNA samples from cancer tissues using
applicable cancer panels. Massive parallel sequencing methods
using NGS panels are established clinical laboratory tests, which
facilitate the detection of significant genetic changes. NGS panels
usually include hundreds of genes, but they cannot identify
genetic aberrations in unexpected genes. Therefore, recent
studies have investigated the application of more extensive
NGS platforms such as sequencing of whole genome, whole
exome, and transcriptome for clinical cancer genomic profiling
(1). Based on such extensive NGS platforms, novel disease
categories were defined and recommended. The most
representative example is BCR-ABL1-like acute lymphoblastic
leukemia (ALL), which was first identified via hierarchical
clustering of gene expression profile and a majority of them
include gene fusions involving CRLF2, JAK2, and ABL gene
categories (2). RNA sequencing (RNA-seq) was routinely used to
classify BCR-ABL1-like ALL because it provided transcriptome
data including gene expression profiling as well as gene fusions
(3). Currently, RNA-seq is extensively used to analyze overall
genomic data. Recent studies have improved the utility of RNA-
seq in identifying gene mutations underlying various cancers,
including hematologic malignancies (4, 5).

In this study, we performed RNA-seq of acute leukemia
samples to evaluate its diagnostic utility. We intentionally
selected BCR-ABL1–positive cases, which are recurrent gene
fusions found in three categories of acute leukemia: B-
lymphoblastic leukemia (B-ALL), acute myeloid leukemia
(AML), and mixed-phenotype acute leukemia (MPAL).
Although all such cases carry the disease-causing BCR-ABL1
fusion, they differ in morphology and antigen expression. Each
antigen represents specific hematopoietic lineages, which are
usually analyzed by flow cytometry. First, we evaluated the
analytical ability of RNA-seq to detect gene fusion and
significant mutations. We then analyzed the gene expression
data in order to select genes that are differentially expressed
between disease categories and identify disease-specific
pathways. In addition, we expanded the usage of gene
expression data to identify the different disease categories
based on the premise that mRNA expression reflects not only
disease-specific pathways but also the hematopoietic lineage-
associated antigen expression. Toward this end, we developed
two models of differential diagnosis based on scoring algorithms
and machine learning and verified using public datasets.
METHODS

Patients and Samples
We reviewed medical records of patients who were diagnosed
with acute leukemia and treated in Seoul St. Mary’s Hospital
from February 2010 to March 2016. Standard diagnosis was
Frontiers in Oncology | www.frontiersin.org 2
established according to the WHO Classification of Tumours of
Haematopoietic and Lymphoid Tissues based on bone marrow
(BM) morphology, immunophenotyping, cytogenetic, and
molecular genetic analysis (6). Among the consecutive cohorts,
349 patients were BCR-ABL1–positive including B-ALL (n = 224,
64.2%), AML (n = 10, 2.9%), and MPAL (n = 9, 2.6%). We
selected 12 samples carrying p190 BCR-ABL1 fusions including
B-ALL (n = 5), AML (n = 3), and MPAL (n = 4) for further
experimental investigation. Their clinical and laboratory
characteristics are summarized in Table 1.

RNA-Seq and Identification of
Fusion and Mutation
RNAs were extracted from BM samples using RNeasy® Mini Kit
(Qiagen, Hilden, Germany). RNA quality was assessed via
analysis of rRNA band integrity on an Agilent RNA 6000
Nano Kit (Agilent Technologies, Santa Clara, CA, USA). Prior
to cDNA library construction, 1 µg of total RNA and magnetic
beads with Oligo (dT) were used to enrich poly(A) mRNA. The
purified mRNAs were disrupted into short fragments, and
the double-stranded cDNAs were immediately synthesized.
The cDNAs were subjected to end-repair poly(A) addition and
connected with sequencing adapters using the TruSeq RNA
Sample Prep Kit (Illumina, San Diego, CA, USA). The
fragments automatically purified by BluePippin 2% agarose gel
cassette (Sage Science, Beverly, MA, USA) were selected as
templates for PCR amplification. The final library sizes and
qualities were evaluated electrophoretically using an Agilent
High Sensitivity DNA Kit (Agilent Technologies, Santa Clara,
CA, USA) and the fragment size ranged between 350 and 450 bp.
Subsequently, the library was sequenced using an Illumina
HiSeq2500 sequencer (Illumina, San Diego, CA, USA) to
obtain 100-bp paired-end reads.

For read mapping and processing, low-quality reads were
filtered according to the following criteria: reads containing more
than 10% of skipped bases (marked as ‘N’s), reads containing
more than 40% of bases whose quality scores were less than 20,
and reads with average quality scores less than 20 each. The
whole filtering process was performed using in-house scripts.
Filtered reads were then mapped to the human reference genome
[Ensembl release 72 (7)] using TopHat, which is supported by
Bowtie2 (8). To identify the fusion genes, three different tools
[FusionMap (9), nFuse (10), and Chimerascan (11)] were applied
to RNA-seq datasets. Finally, the common fusion genes detected
by the three tools were considered as actual fusion genes in each
patient. To identify variants, GenomeAnalysisTK (v.2.3.9) and
Mills-and-1000G-gold.standard-INDELs.hg19 (12) were used
for realignment. BaseRecalibrator Tool in Genome Analysis
ToolKit (GATK) was used for base quality score recalibration,
and variants were called using SNPiR. All variants were then
annotated using SnpEff (v.4.1).

Massive Parallel Sequencing for
Mutation Detection
DNAs were extracted from BM samples using QIAamp DNA
Mini Kit (Qiagen, Hilden, Germany). DNA quality was assessed
August 2021 | Volume 11 | Article 717616
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with Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific,
Waltham, MA, USA). SM acute leukemia panel customized for
Seoul St. Mary’s Hospital was used to validate the detected
mutations via RNA-seq. The SM panel consists of 67 genes
with 1,239 DNA amplicons (13). The library preparation was
performed via automated processes using IonChef™ system
according to the manufacturer’s instructions (Thermo Fisher
Scientific, Waltham, MA, USA). Sequencing was performed on
an Ion S5 Sequencer (Thermo Fisher Scientific, Waltham, MA,
USA). Read mapping, variant calling, and variant annotation
were performed using the Ion Torrent Server software.
Sequenced reads were mapped to the human reference genome
(hg19, Genome Reference Consortium, February 2009) using
TMAP v5.2.2. The pathogenic impact on gene function of
missense mutations was estimated using in silico prediction of
Sorting Intolerant From Tolerant (SIFT) and Polyphen-2.
Score <0.05 is predicted to be deleterious in SIFT, and score
close to 1.0 is predicted to be damaging in PolyPhen-2.

Functional Annotation by Gene Set
Enrichment Analysis (GSEA) and Gene
Ontology (GO)
The gene expression level was measured with Cufflinks v2.1.1
(14) using the gene annotation database of Ensembl release 72.
The non-coding region was removed. Multiread correction and
frag-bias-correct were used to improve the accuracy of
measurement. Differentially expressed genes (DEGs) were
identified using Cuffdiff tool with a statistically significant
Frontiers in Oncology | www.frontiersin.org 3
q-value (<0.05). First, we performed functional annotation
of DEGs according to the GO Consortium (http://www.
geneontology.org/index.shtml) by R package, goseq (15). GO
database classifies genes according to the three categories of
biological process (BP), cellular component (CC), and molecular
function (MF) and annotates the function of the selected genes. P
values < 0.001 were considered statistically significant. This
ontology result was rechecked using the database for
annotation, visualization, and integrated discovery (DAVID)
bioinformatics tool (16). In addition, we performed GSEA to
analyze the critical transcriptome pathways (17). Toward this
end, the estimated expression levels were used in GSEA to
determine the enrichment scores according to the ranked-
ordered gene list. With the predefined gene sets of GSEA, a
total of 167 Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were considered, and the pathways containing at least
15 genes were evaluated. The significant scores were computed
using 1,000 nonparametric permutation test, and P values < 0.05
were considered as statistically significant.

Integration of Gene Network Analysis
We uploaded the DEG lists containing gene identifiers (probe set
IDs) and corresponding P-values to Ingenuity Pathway Analysis
(IPA; Ingenuity Systems, www.ingenuity.com). The association
of the gene sets with the canonical pathways indicated possible
effects on the well-defined biological pathway of the IPA
platform based on the most up-to-date knowledge base. We
extracted the most drastically affected functions (P-value ≤ 0.05;
TABLE 1 | Characteristics of patients at diagnosis.

Case Sex/
Age

WBC
(109/L)

BM blast
(%)

Positive immunophenotype Karyotype

ALL1 F/70 13,620 92 CD10, CD19, CD20, CD22, Cy-CD79a, CD34, HLA-DR 46,XX,t(9;22)(q34;q11.2)[1]/45,idem,-7,add(19)(p13.3)[8]/
46,XX[11]

ALL2 F/50 3,570 99 CD10, CD19, CD22, Cy-CD79a, CD33, CD34, HLA-DR 46,XX,t(9;22)(q34;q11.2)[2]/
46,idem,der(20)t(1;20)(q23;q13.1)[10]/46,XX[8]

ALL3 F/35 172,530 97 CD10, CD19, CD20, CD22, Cy-CD79a, CD33, CD34,
HLA-DR

46,XX,t(3;22;9)(p25;q11.2;q34)[20]

ALL4 M/52 50,280 80 CD10, CD19, CD20, CD22, Cy-CD79a, CD34, HLA-DR 46,XY,der(9)del(9)(p13p22)t(9;22)(q34;q11.2),der(22)t(9;22)
[12]/46,idem,
del(11)(q11)[7]/46,XY[1]

ALL5 F/52 9,260 90 CD10, CD19, CD33, Cy-CD79a, CD34, HLA-DR 45,XX,der(3;7)(q10;q10),t(9;22)(q34;q11.2)[15]/46,XX[5]
AML1 F/57 89,170 75 CD33, CD11c, CD14, CD64, CD117,

Cy-MPO, CD10, CD19, CD56, CD34, HLA-DR
46,XX,t(9;22)(q34;q11.2)[25]/46,XX[5]

AML2 M/29 55,530 73 CD33, CD11c, CD117, cy-MPO, CD19, CD34, HLA-DR 46,XY,t(9;22)(q34;q11.2)[20]
AML3 F/57 78,670 63 CD13, CD33, CD11c, CD14, CD64,

Cy-MPO, CD10, CD19, CD22, CD34, HLA-DR
47,XX,+der(3;17)(q10;q10),t(9;22;14)(q34;q11.2;q32)[20]

MPAL1 M/33 23,290 99 CD10, CD19, CD79a, Cy-CD22, CD13, CD33,
cy-MPO, CD7, CD34, HLA-DR

45,XY,-7,t(9;22)(q34;q11.2)

MPAL2 M/58 16,510 58 CD10, CD19, CD79a, Cy-CD22, CD13, CD33, CD11c,
CD64,
Cy-MPO, CD7, CD34, HLA-DR

46,XY,t(9;22)(q34;q11.2)

MPAL3 F/56 6,820 83 CD19, CD20, CD79a, Cy-CD22, CD13, CD33, Cy-MPO,
CD34, HLA-DR

49,XX,+X,+4,+8,t(9;22)(q34;q11.2),i(17)(q10)[5]/49,sl,add(4)
(p16),
-10,add(12)(p11.2),+mar[10]/49,sdl1,del(13)(q14)[2]/48,sdl2,
-del(13q)[2]/50,sl,+8[2]/50,sl,der(3)t(3;?13)(q27;q13),+8[2]/
46,XX[4]

MPAL4 F/52 43,390 87 CD10, CD19, CD22, Cy-CD79a, CD33, cy- MPO,
CD7, CD34, HLA-DR

45,XX,-7,t(9;22)(q34;q11.2)[18]/46,XX[2]
WBC, while blood cell count; BM, bone marrow; ALL, acute lymphoblastic leukemia; MPAL, mixed-phenotype acute leukemia; AML, acute myeloid leukemia; cy-, cytoplasmic.
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|z-score|≥ 2). The right-tailed Fisher’s exact test was used to
estimate the probability that the association between a set of
molecules and a function or pathway might be due to random
chance. We also generated protein-protein interaction networks
and a network view, which revealed the molecular relationship
between the molecules (18).

Development of Differential Diagnosis
Models; Scoring Algorithm and
Machine Learning
The differential diagnosis of acute leukemia is based on antigen
expression on the surface and in the cytoplasm, which are usually
analyzed by flow cytometry. Because the antigen expression was
closely associated with gene expression, we postulated that the
three categories of acute leukemia can be distinguished via
analysis of gene expression data. Therefore, we selected DEGs,
which showed more than 2-fold expression and a significant
q-value (<0.05) in AML compared with B-ALL, and defined
them as AML-specific genes. B-ALL–specific genes were defined
similarly. We limited genes with at least 100 fragments per
kilobase of transcript per million mapped reads (FPKM).
Utilizing these tools, we finally selected 251 AML- and 117 B-
ALL–specific genes (Supplementary Table S1). Each gene
showed a different FPKM value. Thus, it is necessary to set a
threshold value to define whether or not the gene was positively
expressed. We carefully set the threshold and developed an
analytical approach for application of the model to any gene
expression data such as microarray as well as RNA-seq of acute
leukemia cases. The details of the process and the formula are
described in the Supplementary Materials. When the FPKM
value of one gene was greater than the final threshold, it was
included in the number of positively expressed genes. We
obtained the AML and B-ALL scores based on the proportion
of positively expressed AML- and B-ALL–specific genes,
respectively. As expected, the AML score was the highest in
AML followed by MPAL- and B-ALL–specific genes, and the B-
ALL score was in the reverse order (Supplementary Figure
S1A). We classified AML, B-ALL, and MPAL based on two
scores according to the following criteria: 1) AML when AML
score ≥ 30 and B-ALL score < 30, 2) B-ALL when AML score <
30 and B-ALL score ≥ 30, and 3) MPAL when both AML and B-
ALL scores ≥ 30. Repeated simulations were performed
to optimize the differential diagnosis scoring algorithm to
obtain a diagnostic accuracy of 92% (11/12, Supplementary
Figure S1B).

In addition, we conducted machine learning for differential
diagnosis using gene expression data selected for the scoring
algorithm. The soft margin support vector machine (SVM) (19)
was used because the gene expression data were not linearly
separable. Kernel function of hyperbolic tangent was applied for
SVM. The Z-transformation of each disease category was carried
out for standardization. We selected the one-vs.-one strategy,
which splits multiple classes into single binary elements for each
pair of classes (e.g., B-ALL-vs.-AML). Although the sample size
was small to generate enough datasets for machine learning, we
performed one-vs.-all SVM cross-validation to reduce this
Frontiers in Oncology | www.frontiersin.org 4
limitation. This method repeated the analyses using data from
1 case for validation and the other 11 for learning, which is
described in the Supplementary Materials. The cross-validation
of our SVM model of machine learning based on our 12 cases
revealed 100% diagnostic accuracy, sensitivity, and specificity.

Validation of Differential Diagnosis Models
Using Public Datasets
To validate the models for differential diagnosis of acute
leukemia, we collected 427 public gene expression datasets
from the International Cancer Genome Consortium (ICGC)
Data Portal (dcc.icgc.org; 206 samples of ALL-US project EXP-
A data and 197 samples of LAML-US project EXP-A data) and
the National Center for Biotechnology Information (NCBI)
website (www.ncbi.nlm.nih.gov; 24 samples of Series
GSE113601 dataset). Reference gene (ABL1) was used as the
internal reaction control to normalize the gene expression. AML
and B-ALL scores were calculated as described previously.
We also validated the performance of a machine learning
method using normalized gene expression levels of the same
public dataset.

Statistical Analysis
Statistical differences between groups were determined using one-
way analysis of variance (ANOVA) followed by Bonferroni’s
post hoc test for multiple comparisons. Pearson’s correlation
analysis was performed for the quantitative results of variant
allele frequencies (VAFs) from RNA-seq with those from
massive parallel sequencing. All analyses were performed using
IBM® SPSS®, version 24.0 (IBM Corp., Armonk, NY, USA).
Differences were significant at P < 0.05.
RESULTS

Detection of the Gene Fusions and
Mutations by RNA-Seq
RNA-seq revealed BCR-ABL1 gene fusions in all enrolled cases.
The number of fusion transcripts varied in each case: 1 to 4 for
BCR-ABL1 and 0 to 3 for ABL1-BCR. All cases carried a BCR-
ABL1 fusion transcript with a splicing site of chr22:23524426 and
chr9:133729451. The secondary splicing site located on the three
base pairs differed from the first ABL1 splicing site as
chr9:133729454, which was observed in five cases. ABL1-BCR
fusion transcripts were detected in 10 cases with a shared splicing
site in chr9:133589842 (exon 1a) and chr22:23595986. The
second common splicing site was located on chr9:133710912
(exon 1b) with the same BCR splicing site. No differences in
splicing sites were detected in cases according to the disease
category (Supplementary Figure S2).

In addition, we found a new fusion in a B-ALL patient with
der(19)t(7;19)(p14;p13.3); mitogen-activated protein kinase
kinase 2 (MAP2K2)-AC010132.5. The MAP2K2 gene, located
on 19p13.3, is a dual-specificity protein kinase belonging to the
MAP kinase kinase family. This kinase is known to play a critical
role in mitogen growth factor signal transduction. AC010132.5 is
August 2021 | Volume 11 | Article 717616
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located on7p14. This fusion was confirmed by Reverse
Transcription Polymerase Chain Reaction (RT-PCR) and
Sanger sequencing (Supplementary Figure S3).

DNA-based SM NGS panel detected 11 single-nucleotide
variations, two insertions, and one in-frame deletion. RNA-seq
detected these variants except two on the NOTCH3 gene because
of the low gene expression value as FPKM < 1.0 (Table 2). VAFs
from RNA-seq showed good correlation with those frommassive
parallel sequencing except mutations with low FPKM < 5.0 (r =
0.787, P = 0.004). We also analyzed the point mutations within
the ABL1 kinase domain associated with drug resistance and
found no significant mutation.

Different Gene Expression Profiles Among
AML, B-ALL, and MPAL
We identified significantly different GO profiles among the three
disease categories including mitogen-activated protein kinase
(MAPK) cascade, angiogenesis, cell activation, cytokine
production, regulation of protein phosphorylation, immune
system process, leukocyte differentiation, receptor activity,
receptor binding, cell communication and adhesion, and cell
death and proliferation (Supplementary Table S2). When
comparing AML with B-ALL, the genes associated with
extracellular exosome, extracellular space, innate immune
response, defense response to bacterium, Fc-gamma receptor
signaling pathway involved in phagocytosis, plasma membrane,
phagocytosis, and engulfment serine-type endopeptidase activity
were enriched in AML. The genes associated with cytoplasm, B
cell differentiation, and cell proliferation were enriched in B-
ALL. Compared with the other leukemias, MPAL revealed
higher gene expression of RNA- and translation-related
ontologies (Figure 1).

In terms of GSEA, the KEGG pathway analyses of 167 gene
sets showing significantly different expression between AML and
B-ALL identified 118 upregulated gene sets in AML and 49
Frontiers in Oncology | www.frontiersin.org 5
upregulated in B-ALL. Among the upregulated gene sets in AML,
29 gene sets showed false discovery rate (FDR) < 0.25 and a
nominal P value < 0.01 (Supplementary Table S3). Among the
upregulated gene sets in B-ALL, two gene sets showed significant
FDR and nominal P value. The IPA analysis of these gene sets
indicated the major altered canonical pathways in MPAL
including IL-6 signaling, PPAR signaling, 14-3-3–mediated
signaling, osteoarthritis pathway, D-myo-inositol-5-phosphate
metabolism, antioxidant action of vitamin C, regulation of the
epithelial mesenchymal transition by growth factors pathway,
super pathway of inositol phosphate compounds, cardiac
hypertrophy signaling (enhanced), and PI3K signaling in B
lymphocytes (Supplementary Figure S4).

Predictive Performance of Developed
Differential Diagnosis Models
We analyzed the public gene expression datasets and compared
the AML and B-ALL scores of three disease categories. The AML
score was significantly high in AML and MPAL compared with
B-ALL (P < 0.001 and < 0.001, respectively). The B-ALL score
was significantly high in B-ALL followed by MPAL and AML
(P < 0.001 for each comparison) (Figure 2A). In the scattergram
of B-ALL score and AML score, the MPAL samples cluster
between AML and B-ALL samples (Figure 2B). The diagnostic
accuracy of scoring algorithm and machine learning was 97.2%
(415/427) and 99.1% (423/427), respectively. We analyzed
additional predictive performance of two differential diagnosis
models according to disease category. The diagnostic sensitivities
of the scoring algorithm were 99.0%, 95.4%, and 95.8% in B-ALL,
AML, and MPAL, respectively. Those of the machine learning
were 99.5%, 99.5%, and 91.7% in the same order, respectively.
The specificities of the scoring algorithm were 95.5%, 98.7%, and
97.3% in B-ALL, AML, and MPAL, respectively. And those of the
machine learning were 100%, 98.7%, and 99.8% in the same
order, respectively (Supplementary Table S4).
TABLE 2 | Mutations analyzed by massive parallel sequencing of DNA and RNA sequencing.

Case Gene Transcript Base change AA Change Type of mutation VAF* RNA-seq VAF** FPKM** SIFT† Polyphen-2†

ALL1 SETD2 NM_014159.6 c.1409_1410insGCCC R471Pfs*21 frameshift 29.45 Detected 33.33 40.51 – –

ALL3 PAX5 NM_016734.2 c.55_56insTG G19Vfs*3 frameshift 38.34 Detected 29.81 238.84 – –

ALL4 NOTCH3 NM_000435.2 c.3736G>A V1246I missense 50.33 Not detected – 0.4 0.52 0
ALL4 TET2 NM_001127208.2 c.3116C>T S1039L missense 53.55 Detected 34.48 10.6 0.29 0.968
ALL4 PAX5 NM_016734.2 c.70G>C G24R missense 6.37 Detected 13.64 78.66 0 1.000
AML1 NOTCH3 NM_000435.2 c.709G>A V237M missense 52.36 Detected – 1.04 0 0.908
AML2 NOTCH3 NM_000435.2 c.33_35delCCG R12del in-frame deletion 4.62 Not detected – 0.79 – –

AML2 RUNX1 NM_001754.4 c.610C>T R204* nonsense 43.35 Detected 52.94 105.24 – –

AML2 RUNX1 NM_001754.4 c.601C>T R201* nonsense 45.35 Detected 44.20 105.24 – –

AML3 NF1 NM_001042492.2 c.4379A>G H1460R missense 65.3 Detected 68.57 27.73 0.27 0.048
MPAL2 TET2 NM_001127208.2 c.2604T>G F868L missense 53.33 Detected 63.64 14.54 0.22 0.307
MPAL2 NF1 NM_001042492.2 c.1198C>G Q400E missense 45.9 Detected 61.54 6.1 1 0.008
MPAL4 SH2B3 NM_005475.2 c.1139T>C L380P missense 47.95 Detected 42.86 39.96 0.2 0.966
MPAL4 NOTCH3 NM_000435.2 c.709G>A V237M missense 48.29 Detected 66.67 1.09 0 0.908
Au
gust 20
21 | Volum
e 11 | A
RNA-seq detected most variants detected in DNA sequencing except two with low gene expression value as FPKM < 1.0.
AA, amino acid; VAF, percentage of variant allele frequency; RNA-seq, RNA sequencing; FPKM, Fragment Per Kilobase of transcript per Million mapped reads; SIFT, Sorting Intolerant
From Tolerant.
*VAF obtained from massive parallel sequencing of DNA.
**VAF and FPKM obtained from RNA-seq.
†The SIFT and Polyphen2 in-silico scores are unavailable for frameshift and nonsense mutations and in-frame deletion.
rticle 717616

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lee et al. RNA-Seq of Acute Leukemia
DISCUSSION

In the current study, we performed RNA-seq of 12 acute
leukemia cases carrying p190 BCR-ABL1. The analysis of
three disease categories using various angles facilitated the
comprehensive evaluation of RNA-seq performance in gene
fusion, mutation, and gene expression and the application
of expression data to differential diagnosis. RNA-seq not only
enabled the reliable detection of all BCR-ABL1 but also provided
accurate splicing sites. There was a common splicing site of BCR
and ABL1 genes as chr22:23524426 and chr9:133729451. Some
patients carried more than one BCR-ABL1 fusions. ABL1-BCR
fusion was generated in some patients. Notably, a new fusion was
detected in this study. Gene fusions in acute leukemia are
implicated in the onset of malignancies, and recurrent driver
gene fusions are used in the classification. Novel gene fusions
Frontiers in Oncology | www.frontiersin.org 6
have been continuously discovered in hematologic malignancies
and represent potential diagnostic or therapeutic targets (20,
21). RNA-seq is a useful tool for genome-wide surveillance
of gene fusions with nucleotide-level resolution of fusion
junctions (22). Studies have demonstrated the potential to
identify gene fusions via improved bioinformatics workflows
(23–25), and therefore, RNA-seq can be used not only to identify
driver gene fusions but also to detect novel and rare gene fusions
in clinical laboratories.

Gene mutations are usually analyzed via DNA sequencing.
However, we postulated that RNA-seq facilitates the screening of
clinically significant mutations based on sequencing data. The
current and previous studies have shown that somatic mutations
can be identified in cancer based on RNA-seq data of cancer-
related genes (4, 26). A specific software, i.e., RNAmut, which
enabled the detection of all clinically important mutations
A B

FIGURE 2 | AML score and B-ALL score of public data. (A) Except AML score between AML and MPAL, AML score and B-ALL score between each leukemia
were significantly different (p < 0.01). (B) Public data of AML and B-ALL show clustering in scatter plot of AML score and B-ALL score. MPAL samples cluster
between AML and B-ALL samples.
A B C

FIGURE 1 | GO of ALL, AML, and MPAL. General functional classification of highly expressed gene in B-lymphoblastic leukemia (B-ALL) compared to acute myeloid
leukemia (AML) (A), AML compared to B-ALL (B), and in mixed-phenotype acute leukemia (MPAL) compared to B-ALL and AML (C). Gene Ontology (GO) analysis
within target genes of significantly altered transcripts was performed using the database for annotation, visualization and integrated discovery (DAVID) bioinformatics
tool. Enriched GO biological processes were identified and listed according to their enrichment P value (P < 0.05) and false discovery rate (FDR < 0.25). Both P and
FDR values were obtained using DAVID 2.1 statistical function classification tool. scale: -log10 of p-value.
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in AML, was developed (5). And tandem duplications in
FLT3 and KMT2A were also effectively detected by RNA-seq
using those novel algorithms (5, 27). Integrated genomic
profiling has increased the ability to identify clinically relevant
genomic alterations of therapeutic significance in hematologic
malignancies (28). In the current study, we successfully detected
clinically significant somatic mutations using RNA-seq data
except the mutations in the genes with very low transcript.
Also, their VAFs from RNA-seq showed good correlation with
those from massive parallel sequencing. Additionally, we
identified mutations within the ABL1 kinase domain via RNA-
seq, which was associated with drug resistance to tyrosine kinase
inhibitors. However, the study showed an intrinsic limitation in
that poorly expressed gene mutations could not be analyzed by
RNA-seq.

Gene expression data showed significantly different GO profiles
among the three disease categories. In B-ALL, B cell differentiation
and transcription factor–associated GOs were enriched. The result
was in agreement with previous studies that demonstrated that
malignant conversion of B-lymphocyte progenitors involves
multiple targeting of a central transcription factor network (29).
In AML, GOs associated with functions of granulocytes were
enriched such as phagocytosis, lysosome, and innate immune
response. Also, results from this and previous studies showed
that extracellular exosome was enriched in AML, which express
the properties relevant to AML pathogenesis that affected
prognosis, response to therapy, and leukemic niche formation
(30). The MAPK cascade is one of the differential GO profiles that
plays an essential role in connecting cell-surface receptors with
altered transcriptional programs and aberrant MAPK activation in
the pathogenesis of various myeloidmalignancies (31). In addition,
the stress-activated MAPK pathways influence the response of
cancer cells to chemotherapies and targeted therapies (32).
Therefore, the role of different ontology profiles in each disease
category requires further elucidation.

We investigated MPAL-specific pathways via substantial
analysis of gene expression profiles and found out that MPAL
constituted a heterogeneous group of diseases rather than
induced by a specific pathway. MPAL is acute leukemia of
ambiguous lineage that is defined by antigen expression. MPAL
contains blasts that express antigens of more than one lineage to
such a degree that is not possible to attribute the leukemia to any
one lineage definitively. Other evidence suggests that the cell of
origin in B-ALL associated with BCR-ABL1 was more immature
than that of other B-ALL cases (33). A hematopoietic progenitor
cell with multilineage potential is considered as a normal
counterpart of the leukemic cells in AML and MPAL with
BCR-ABL1 (33). Therefore, we carefully postulated that acute
leukemia with BCR-ABL1 may represent a series of diseases
carrying different proportions of specific lineage.

This is the first trial to develop models of differential diagnosis
using RNA-seq. Based on AML and ALL-specific gene
expression data, we developed two models, namely, scoring
algorithm and machine learning. Although there was a
practical limitation of small sample size for machine learning,
both models were effective not only in our 12 BCR-ABL1–
Frontiers in Oncology | www.frontiersin.org 7
positive cases but also in public datasets from acute leukemias
regardless of specific genetic aberration. In addition, gene
expression data contain profound information including
molecular pathways associated with disease pathogenesis and
potential therapeutic targets. Recently, the usage of gene
expression data has been expanded by integrating traditional
medical data and advanced rapidly using machine learning
algorithms in real clinical medicine (13). The machine learning
model discussed in this study might be used to integrate gene
expression data with gene fusions and mutations.

Taken together, this study demonstrated that RNA-seq
not only enabled the detection of gene fusion and clinically
significant mutations but also assigned the lineage of acute
leukemia according to gene expression. The potential application
of gene expression data by RNA-seq data that facilitate the
accurate differential diagnosis of acute leukemia requires
further investigation.
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